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Abstract—Widespread use of the Internet and social networks
invokes the generation of big data, which is proving to be useful
in a number of applications. To deal with explosively growing
amounts of data, data analytics has emerged as a critical technol-
ogy related to computing, signal processing, and information net-
working. In this paper, a formalism is considered in which data are
modeled as a generalized social network and communication the-
ory and information theory are thereby extended to data analytics.
First, the creation of an equalizer to optimize information transfer
between two data variables is considered, and financial data are
used to demonstrate the advantages of this approach. Then, an
information coupling approach based on information geometry is
applied for dimensionality reduction, with a pattern recognition
example to illustrate the effectiveness of this formalism. These
initial trials suggest the potential of communication theoretic data
analytics for a wide range of applications.

Index Terms—Big data, social networks, data analysis, commu-
nication theory, information theory, information coupling, equal-
ization, information fusion, data mining, knowledge discovery,
information centric processing.

I. INTRODUCTION

W ITH the explosive growth of Internet and mobile com-
munications, (big) data analytics has emerged as a

critical technology, adopting techniques such as machine learn-
ing, graphical models, etc., to mine desirable information for
a wide array of information and communication technology
applications [1]–[6]. Data mining or knowledge discovery in
databases (KDD) has been used as a synonym for analytics
on electronic data. To achieve the purpose of data analytics,
there are several major steps: (i) based on the selection of data
set(s), pre-processing of the data for effective or easy compu-
tation, (ii) processing of data or data mining, likely adopting
techniques from statistical inference and artificial intelligence,
and (iii) post-processing to appropriately interpret results of
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data analytics as knowledge. Knowledge discovery aims at
either verification of user hypotheses or prediction of future
patterns from data/observations. Statistical methodologies deal
with uncertain or nondeterministic reasoning and thus models,
and are the focus of this paper. Machine learning and artifi-
cial intelligence are useful to analyze data, e.g., [2], [3], [7],
typically via regression and/or classification. With advances in
supervised and unsupervised learning, inferring the structure
of knowledge, such as inferring Bayesian network structure
from data, is one of the most useful information technologies
[8]. In recent decades, considerable research effort has been
devoted to various aspects of data mining and data analysis,
but effective data analytics are still needed to address the
explosively growing amount of data resulting from Internet,
mobile, and social networks.

A core technological direction in data analytics lies in
processing high-dimensional data to obtain low-dimensional
information via computational reduction algorithms, namely,
by nonlinear approaches [9], [10], compressive sensing [11],
or tensor geometric analysis [12]. In spite of remarkable
achievements, with the exponential growth in data volume,
it is very desirable to develop more effective approaches to
deal with existing challenges including effective algorithms
of scalable computational complexity, outlier detection and
prediction, etc. Furthermore, modern wireless communication
systems and networks to support mobile Internet and Internet
of Things (IoT) applications require effective transport of
information while appropriate data analytics enable spectral
efficiency via proper context-aware computation [13]. The
technological challenge for data analytics due to very large
numbers of devices and data volume remains on the list of the
most necessary avenues of inquiry. At this time, state-of-the-art
data analytics primarily deal with data processing through
computational models and techniques, such as deep learning
[14]. There lack efforts to examine the mechanism of data
generation [15] and subsequent relationships among data,
which motivates the investigation of data analytics in this paper
by leveraging communication theory and information theory.

As indicated in [16] and other works, relationships among
data can be viewed as a type of generalized social network.
The data variables can be treated as nodes in a network and
their corresponding relationships can be considered to be links
governed by random variables (or random processes by consid-
ering a time index). Such scenarios are particularly relevant for
today’s interactive Internet data from/related to social networks,
social media, collective behavior from crowds, and sensed data
collected from sensors in cyber-physical systems (CPS) or IoT.
Therefore, with the aid of this generalized social network con-
cept, we propose a new communication theoretic methodology
of information-centric processing for (big) data analytics in
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this paper. Furthermore, by generalizing the scenario from a
communication link into a communication network, we may
use ideas from network information theory and information
geometry to develop a novel technology known as informa-
tion coupling [37], which suggests a new information-centric
approach to extraction of low-dimensional information from
high-dimensional data based on information transfer. These
technological opportunities describe a complete communica-
tion theoretic view of data analytics.

The rest of this paper is organized as follows. Section II
presents our modeling of data into a generalized social network
and its resemblance to typical communication system models.
Section III describes the setting of our proposed communication
theoretic data analytics to more effectively process the data, us-
ing financial data to illustrate the processing methodology with
comparisons to well-known techniques. Related literature is re-
viewed to better explain our proposed methodology. Section IV
briefly introduces the rationale from information geometry and
the principle of information coupling to realize dimensionality
reduction, with an image pattern recognition example to show
the effectiveness of this new idea based on network information
theory. Finally, we make concluding remarks in Section V, with
suggested open problems to fully understand and to most effec-
tively revisit data mining and knowledge discovery in (big) data
analytics. In addition to its potential for creating new methods
for data analytics, this new application scenario also creates a
new dimension for communication and information theory.

II. SOCIAL NETWORK MODELING OF DATA

As noted in [16], entities (e.g., data) with relationships can be
viewed as social networks, and thus social network analysis and
statistical communication theory share commonalities in many
cases. For data analytics, it is common to face a situation in
which we have two related variables, say X and Y , possibly
modeled as random variables. If a time index is involved, say
the variables are observed or sampled in sequence, these two
variables are actually two random processes. Consequently,
each sequence of data drawn from a variable is a sample path of
the random process. An intuitive way of examining the relation-
ship between the two processes is to compute the correlation
coefficient between these two sampled data sequences.

For big data problems in an Internet setting, we are often
facing a substantial number of variables up to thousands or even
millions in order, and therefore must rely on machine learning
to predict or otherwise to make inferences from data. One of the
key problems is to identify low-dimensional information from
high-dimensional data, as a key issue of knowledge discovery.
Recently, another vision, known as small data, has emerged to
more precisely deal with variables of data on a human scale
[17]. Generally speaking, in data analytics, whether addressing
big data or small data, effective and precise inference from data
is always the fundamental challenge. An approach different
from machine learning arises by extracting embedded informa-
tion from data. More precisely, for example, we may identify
the information flowing from variable X to variable Y just as in
a typical point-to-point digital communication system.

Fig. 1. Graphical model of network variables for a large data set.

Unfortunately, real world problems are much more compli-
cated than a single communication link, and there are many
more variables involved. Fig. 1 depicts the social network
structure of a large data set through realization of graphical
models and Bayesian networks, while each node (i.e., variable)
represents a data variable (actually a vector of data) and each
link represents the relationship and causality between two data
variables. Such relationships between data variables usually
exhibit uncertainty due to the nature of data or imperfect ob-
servations, and thus require probabilistic modeling. Even more
challenging, such causal relationships among large numbers
of variables may not be known, and thus a challenge is to
determine or to learn the knowledge discovery structure [6],
[19], [20].

The social network analysis of data can be performed in
different ways, such as using graphical models with machine
learning techniques [2], [16]. However, as noted, such widely
applied methodologies focus on data processing and inference,
rather than considering information transfer. Communications
can be generally viewed as transmission of information from
one location to another location as illustrated in Fig. 2(a). We
may further use signal flow of random variables to abstractly
portray such a system as in Fig. 2(b). The channel as a link
between random variables X and Y , can be characterized by the
conditional probability distribution PY |X (y|x). When a channel
involves multiple intermediate variables relating X and Y , this
results in receive diversity as shown in Fig. 2(c).

More advanced communication theory, namely, multiple ac-
cess communication, has been developed in recent decades and
may be useful for Internet data analytics. Multiuser detection
(MUD), though commonly connected with code division multi-
ple access (CDMA) communications, generally represents situ-
ations in which multiple user signals (no need to be orthogonal)
are simultaneously transmitted and then detected over the same
frequency band [18]. In such situations, the signal model can be
described as

Y = (AR)X+N

where X is the transmitted signal vector; Y is the received
signal vector embedded in noise N; R denotes the correlation
matrix among signals used by transmitter-receiver pairs and
A is a diagonal matrix containing received amplitudes. The
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Fig. 2. Communication theory in a signal flow or graphical model to show
causal relationships in data variables. (a) A Tx-Rx of a traditional digital
communication system. (b) Signal flow representation. (c) Receive diversity.

Fig. 3. Distributed detection for sensor networks.

non-diagonal part of AR results in multiple-access interference
(MAI). Similarly, a multiple antenna (MIMO) signal model can
be described mathematically as

Y = HX+N

where H is the channel gain matrix [21]. From the similarity in
mathematical structure of MUD and MIMO systems, a duality
in receiver structures can be also observed. This is fundamen-
tally the same information flow structure as in data analytics,
and so multiuser communication theory provides a new tool
to comprehend information flow in general social networking
models. In [16], recommender systems are illustrated as an
example of this potential.

In this paper, we will delineate the connection between data
analytics and social network analysis, considering a link in a
generalized social network to be equivalent to a communication
link. Consequently, we can leverage the knowledge of commu-
nication theory to investigate data analytics, a process we term
communication theoretic data analytics. (Processing on graphs
to extract motif information aims at alleviating the complexity
of data analytics [22], and bears somewhat the same spirit
as communication theoretic data analytics.) Section III will
introduce the optimal receiver to tackle nonlinear distortion by
using an equalizer, and thereby to optimize information transfer
for more effective data analytics. A further interesting commu-
nication model is the sensor network illustrated in Fig. 3, where
an information source is detected by multiple sensors that send
their measurements to a fusion center for decisions [23]. The
number of sensors might be large but the actual information
source might be simple. Directly processing sensor data might
be a big data problem but a single source may induce simplifi-
cation by considering information transfer, which alternatively

suggests an information theoretic formulation of information
coupling toward critical dimension reduction in data analytics,
which will be introduced in Section IV.

III. COMMUNICATION THEORETIC IMPLEMENTATION

OF DATA ANALYTICS AND APPLICATIONS

Using the communication theoretic setup, we will demon-
strate how to deal with practical data analytics. To infer useful
results from big data, we will be able to acquire some knowl-
edge, say the conditional probability structure PYn|Xm(yn|xm)
in a general social network model of big data as in Fig. 1.
Through communication theory, we may treat Xm as an infor-
mation transmitter and Yn as the information receiver. In our
setting, PYn|Xm(yn|xm) represents the communication channel,
which can be corrupted by noise due to imperfect sampling,
noisy observation, and possible interference from unknown
variables or outliers. This point-to-point scenario is well studied
in communication theory.

A common and most fundamental scenario in (big) data
analytics is to find the relationship between two variables, X
and Y , while each variable represents a set or a series of data.
Let us borrow the concept of Bayesian networks or graphical
models in machine learning. We may subsequently infer the
realization y of Y based on the observation of the realization
x of X . Suppose there exists a causal relationship X → Y , with
uncertainty (or embedded in an unknown mechanism allowing
information transfer). As noted above, this causal relationship
can be represented by the conditional or transition probability
PY |X (y|x), which can be considered as a communication chan-
nel. Direct computation and inference therefore proceed based
on this structure. If we intend to infer the knowledge structure
such as this simple causal relationship, machine learning on
(big) data becomes a principal problem [2], [5]–[7].

A. Equalizer to Optimize Information Transfer

Again, our view of this simple causal relationship considers
information transfer from X to Y as a communication channel.
In this context, if we want to determine the causal relationship
of data due to information transfer, according to communication
theory, we should establish an equalizer for the channel to better
receive such information. The equalizer in data analytics is most
appropriately of the form of an adaptive equalizer, with earlier
observed data used for the purpose of training to obtain the
weighting coefficients. The most challenging task in machine
learning is knowledge discovery, i.e., identifying the causal
relationship among variables. The communication theoretic
approach supplies a new angle from which to examine this
task, and its information theoretic insight will be investigated
in Section IV via information coupling.

Well known in communication theory, an equalizer serves
as a part of an optimal receiver to detect a transmitted signal
from a noisy channel distorted by nonlinearities and other
impairments. In order to infer from another data variable or time
series, we may take advantage of the same concept to process
the data. Proper implementation of an equalizer could enhance
the causal relationship between data variables and time series,
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and thus allow better judgement or utilization of the causal
relationship. This is one core issue in knowledge discovery of
data analytics. In big data analytics, this knowledge problem
has a very large number of variables. As in Fig. 1, we focus
on the problem of identifying the causal relationships between
the set of variables X1,X2, · · · ,XM and the set of variables
Y1,Y2, · · · ,YN , specified by appropriate weights. This is identical
to the following multiple access communication problem:

(X1,X2, . . . ,XM)[hi j]M×N = (Y1,Y2, . . . ,YN)
T (1)

where [hi j] =H is analogous to the channel matrix. This knowl-
edge discovery problem in data analytics is thus equivalent to
a blind channel estimation/identification problem in multiple
access communication. Since a feedback channel may not
exist in general, this is a blind problem. However, for online
processing, equivalent feedback might not be impossible, which
we leave as an open issue. We start from some simple cases to
illustrate this idea.

• Information diversity: A variable X may influence a
number of variables, say Y1,Y2, · · · ,YN , which is a form
of information diversity. To identify a causal relationship
between X and Yn, this is precisely a multi-channel esti-
mation problem such as arises in wireless communication.
Since feedback in causal data relationships is generally im-
possible, such a class of problems falls under the category
of blind multi-channel estimation/identification [24], [25].

• Information fusion: Another class to consider is the
causal relationship from many data variables to influence
a single data variable, say X1,X2, · · · ,XM to Y . This cor-
responds to multi-input-single-output channel estimation
or identification, which is a rather overlooked subject.
However, another similar problem, source separation, has
been well studied.

B. Applications to Inference on Financial Time Series

A useful way to demonstrate our analytical methodology is to
consider financial time series data, which has been well studied
in the literature. The purpose is to demonstrate the prediction
of stock prices from other factors. In this example, we are
trying to predict the stock price of Taiwan Semiconductor
Manufacturing Corp. (TSMC), which is the world’s largest
contract chip fabrication company. To demonstrate information
transfer and thus communication theoretic data analytics, we
consider two factors, which appear to be somewhat indirectly
related to stock prices in Taiwan but are potentially influential:
the exchange rate between U.S. dollars (USD) and New Taiwan
Dollars (NTD, the local currency in Taiwan), and the NASDAQ
index which primarily consists of high-tech stocks in the USA.

Let the time series of the exchange rate between USD and
NTD be X1[n], n = 0,1, . . . and the time series of the NASDAQ
index be X2[n], n = 0,1, . . .. The time series for the stock price
of TSMC is Y [n], n = 0,1, . . .. Now, both X1[n] and X2[n]
may influence Y [n]. This classical problem has been typically
handled by multivariate time series analysis, which serves as a
benchmark without introducing more advanced techniques.

Fig. 4. Equalizer structure to extract the causal relationship between two
variables, from X to Y .

Now we treat this information fusion problem as a two-
channel information transfer (and thus communication) prob-
lem: X1[n] → Y [n] and X2[n] → Y [n]. To proceed, we establish
an equalizer to filter the data in each channel. The equalizer is
typically of the tap-delay-line type, while the time unit is one
day since our data uses the closing rate/index/price. The length
of this adaptive equalizer is L and the corresponding weighting
coefficients are determined via training. We treat 2009–2013
as the training period and then infer 2014 data in an online
way. The order of the adaptive equalizer and the weighting
coefficients are learned during the training period, and they
are kept and used during inference. Our numerical experiment
shows that

• Each individual factor (exchange rate or NASDAQ index)
is surprisingly useful but there is still room for improve-
ment by combining them. Furthermore, via classical meth-
ods such as linear least squares or Bayesian estimation
[26], the exchange rate appears to be a much less predictive
factor than the NASDAQ index, which is to be expected
since the NASDAQ index to a certain extent can represent
high-tech stocks including TSMC.

• It is expected that multivariate statistical analysis would
help in this case. We adopt multivariate linear regression
[27] and multivariate Bayesian estimation [26] as bench-
mark techniques. The prediction of TSMC stock prices
from the exchange rate and NASDAQ index is shown in
Fig. 5. The mean square errors (MSEs) for both techniques
perform similarly to the results using only the NASDAQ
index.

• We implement the tap-delay-line equalizer structure of
Fig. 4 to optimize information transfer. Based on the
MSE criterion, we search for the best equalizer length and
corresponding weighting coefficients, which are then used
for inference. During the inference period of 2014, the
length remains the value from training but the weighting
coefficients are updated online. In Fig. 6, we surprisingly
observe excellent performance of inference using the ex-
change rate, as effective as the NASDAQ index. This result
illustrates different insights into the correlation of data
from the traditional approaches, since these approaches
suggest that the NASDAQ index can describe the TSMC
stock better. Therefore, our result demonstrates the po-
tential of this communication theoretic data processing
methodology and the potential of considering information
transfer. Thus, the potential of information-centric data
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Fig. 5. Prediction of TSMC stock price by (a) multivariate linear regression, and (b) multivariate Bayesian estimation, where blue dots denote actual prices and
red crosses denote prices inferred from the exchange rate and NASDAQ index.

Fig. 6. Communication theoretic data analytics using an equalizer to optimize
information transfer from (a) the exchange rate, and (b) the NASDAQ index to
the TSMC stock price.

processing over conventional machine learning is worth
further study.

• Similar to diversity combining in digital communication
systems, information combining in communication theo-
retic data analytics potentially further improves the per-
formance of inference. Maximal ratio combining (MRC)
is well known to be optimal for diversity combining based
on signal-to-interference-plus-noise ratio (SINR). Using a
similar concept as equation (15), we develop MRC infor-
mation combining to weight equalized channels inversely
proportional to the MSE in the training period. Such weights

Fig. 7. Inference via MRC information combining two equalized data pro-
cessing channels, where the length of the equalizer for the exchange rate is
16 (days) and the length of the equalizer for the NASDAQ index is 61 (around
3 months).

in MRC information combining can be updated online.
Fig. 7 depicts the prediction results (red crosses) and true
values (blue dots). We calculate the mean square error and
find even better performance than using only the exchange
rate. The MSE can be lower than those of multivariate
linear regression and multivariate Bayesian estimation.

In Appendix A, we develop the following rules of thumb
for communication theoretic data analytics, while subject
to further enhancements.

Problem: To infer Y based on X1,X2, . . . ,XN .

Procedure:

1) Use an equalizer (i.e., optimal receiver) implementation
to identify causal relationships among data variables,
X1 → Y,X2 → Y, . . . ,XN → Y , with the corresponding
MSEs according to the training dataset(s).

2) Select Nc data variables to transfer sufficient information
(or sufficiently small MSE errors in training) to identify
the structure of knowledge by keeping the length and
coefficients of the equalizer, or by online update of co-
efficients.

3) Conduct MRC information fusion of these Nc data vari-
ables as in Fig. 12 to make inferences.

Remark 1: The conjecture that this communication the-
oretic data analytics approach delivers more desirable
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performance comes from optimizing information transfer and
avoiding cross-interference among data variables (similar to
multiple access interference in multiuser communication),
while existing multivariate statistical analysis or statistical
learning multiplexes all data variables together to result in
multiple access interference in data analytics. Furthermore, for
each data variable, a selected equalizer length with coefficients
is used, then information is combined with other data variables,
to allow better matching to extract information in this com-
munication theoretic data analytics approach. Each equalizer is
designated to match a specific data variable, while multivariate
analysis usually deals with a common fixed depth of observed
data in processing for all data variables. More observations may
not bring in more relevant information but rather additional
noise/interference. Although recent research suggests a duality
between time series and network graphs [28], [29], information-
centric processing of data suggested by communication theory
supplies a unique and generally applicable view of inference,
even though its extension to more complicated network graph-
ical relationships among data is still open. Note that during
the training period, the computational complexity is high, how-
ever, the computation load is rather minor in the inference
stage.

Remark 2: Applying information theoretic data analytics
such as mutual information and information divergence beyond
correlation have been proposed in the literature, e.g., [30],
[31]. However, such efforts have not systematically applied
information-centric processing techniques based on communi-
cation systems as suggested in this paper. In the mean time,
though we have illustrated only one-hop network graphical
inference, these methods may be applied further for data clean-
ing, data filtering, identification of important data variables for
inference, and identification of causal relationships among data
variables to support knowledge discovery in data analytics. To
fuse heterogeneous information, fuzzy logic [30] or Markov
logic [31] is usually employed. In the proposed approach,
information combining of different-depth information transfer
alternatively serves the purpose in an effective way, while time
series data mining typically considers similarity measured in
terms of distance [32].

At this point, we cannot conclude that communication the-
oretic data analytics are better than multivariate analysis and
other machine learning techniques, as many advanced tech-
niques such as Kalman filtering [33], graphical models [34],
or role discovery [35] that are somewhat similar to our pro-
posed approach have not been considered in our comparison.
However, via the above example, the communication theoretic
data analytical approach indeed demonstrates its potential,
particularly as a way of fusing information, while it seems
more difficult to achieve a similar purpose by pure multivariate
analysis. Some remaining open problems for communication
theoretic data analytics are

• How to measure the information transfer from each vari-
able Xi → Y , i = 1,2, . . ..

• How to determine a sufficient amount of information
transfer? And thereby, how to determine which variables
should be considered in data analytics.

A more realistic but complicated scenario involves informa-
tion fusion and information diversity at the same time, which
is a multiuser detection or MIMO problem. Due to space
limitations, it is not possible to explore this idea here, in spite
of its potential applicability to different problems, such as
recommender systems etc. Some open issues include:

• Joint prediction of Y1,Y2, . . . ,YN from X1,X2, . . . ,XM , and
associated techniques to effectively solve this problem,
such as sub-space approaches etc.,

• Optimal MUD has NP-hard complexity, leading to subop-
timal receivers such as the de-correlating receiver. Com-
parisons of such structures to multivariate time series
analysis, mathematically and numerically, are of interest.

IV. INFORMATION COUPLING

Thus far, we have intuitively viewed communication theo-
retic data analytics as being centered on information transfer
among different data variables, and then applied receiver tech-
niques to enhance data analytics. This suggests that the amount
of information in the data is in fact far less than the amount
of (big) data. The methodology in Section III deals with a
number of data variables to effectively execute information pro-
cessing analogously to communication systems and multiuser
communications. The remaining challenge is to identify low-
dimensional information structure from high-dimensional (raw)
data, and to better construct intuition about communication
theoretic data analytics from information theory. In this section,
we aim to apply the recently developed information coupling
[37] to achieve this purpose, and also provide information
theoretic insights to information-centric data processing.

A. Introduction to Information Coupling

From the analog between communication networks and data
analytics, intuition suggests the need for information-centric
processing in addition to data processing for not only optimiz-
ing communication systems/networks but also mining impor-
tant information from (big) data. The conventional studies of
information processing are limited to data processing, thereby
focusing on representing information as bits, and transmitting,
storing, and reconstructing these bits reliably. To see this,
let us consider a random variable with M possible values
{1,2, . . . ,M}. If we know its value reliably, then we can de-
scribe this knowledge with a single integer, and then further
process the data with this known value. On the other hand,
if the value is not deterministically acquirable, then we need
to describe our knowledge with an M-dimensional distribution
PM(m), which requires M−1 real numbers to describe. There-
fore, the data processing task has to be performed in the space
of probability distributions.

When we move towards information-centric processing,
the general way to describe information processing relies on the
conditional distribution of the message, conditioned on all the
observations, at each node of the network, e.g., PYn|Xm in Fig. 1.
Conventional information theoretic approaches working on the
distribution spaces in communication and data processing are
mostly based on coded transmission, in which the desired
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messages are often quite large, which results in the extremely
high dimensionality of the belief vectors. This is in fact one of
the main difficulties of shifting the data processing from data
centric to information centric. It turns out that this difficulty
comes from the fact that the distribution space itself is not a
flat vector space, but is a rather complicated manifold. Amari’s
work [36] on information geometry provides a tool to study this
space, but the analysis can be quite involved in many cases. In
this section, we propose a framework that allows us to greatly
simplify this challenge. In particular, we turn our focus to low
rate information contained in the data, which is significant
for describing the data. We call such problems information
coupling problems [37], [38].

To formulate this problem mathematically, let us consider
a point-to-point communication scenario, where a signal X is
transmitted through a channel with the transition probability
WY |X , which can be viewed as a |Y | × |X | matrix, to generate
an output Y . In the conventional communication systems, we
consider encoding a message U into the signal vector X , to
form a Markov relation U → X → Y , from which, an efficient
coding scheme aims to design both the distribution PU and
the conditional distributions PX |U=u to maximize the mutual
information I(U ;Y ), which corresponds to the communica-
tion rate. Such optimization problems in general do not have
analytical solutions, and require numerical methods such as
the Blahut–Arimoto algorithm to find the optimal value. More
importantly, when we allow coded transmissions, i.e., to replace
X and Y by n independent and identically distributed (i.i.d.)
copies of the pair, it is not clear a priori that the optimizing
solution would have any structure. Although Shannon provided
a separate proof for the point-to-point case that the optimization
of the multi-letter problem over PXn|U should also have an
i.i.d. structure, failure to generalize this proof to multi-terminal
problems remains the biggest obstacle to solving network
capacity and subsequently design algorithms. In contrast, the
information coupling deals with the maximization of the same
objective function I(U ;Y ), but with an extra constraint that
the information encoded in X , measured by I(U ;X) is small.
With a slight strengthening this constraint can be reduced to
the condition that all the conditional distributions PX |U (·|u),
for a u, are close to the marginal distribution PX . We refer the
reader to [37] for the details of this strengthening. With this
extra constraint, the linear information coupling problem for the
point-to-point channel can be formulated as

max
U→X→Y

1
n

I(U ;Y ), (2)

subject to :
1
n

I(U ;X)≤ δ,

1
n
‖PX |U=u −PX‖2 = O(δ), ∀u, (3)

where δ is assumed to be small.
It turns out that the local constraint (3) in (2) that assumes all

conditional distributions are close to the marginal distribution,
plays the critical role of reducing the manifold structure into
a linear vector space. In addition, the optimization problem,
regardless of the dimensionality, can always be solved analyt-

ically with essentially the same routine. In order to show how
the local constraint helps to simplify the problem, we first note
that given the conditional distributions PX |U=u are closed to PX

for all u in terms of δ, the mutual information I(U ;X) can be
approximated up to the first order as

I(U ;X) = δ ·∑
u

PU (u) · ‖ψu‖2 +o(δ) (4)

where ψu is the perturbation vector with the entries ψu(x) =
(PX |U=u(x)−PX (x))/

√
δ ·PX (x), for all x. This local approx-

imation results from the first order Taylor expansion of the
Kullback–Leibler (K–L) divergence D(PX |U=u‖PX ) between
PX |U=u and PX with respect to (w.r.t.) δ. In addition, with this
approximation technique, we can similarly express the mutual
information at the receiver end as

I(U ;Y ) = δ ·∑
u

PU (u) · ‖ψ̂u‖2 +o(δ) (5)

where ψ̂u(y) = (PY |U=u(y)−PY (y))/
√

δ ·PY (y). Now, note that
U → X → Y forms a Markov relation, therefore both PY |U=u
and PY , viewed as vectors, are the output vectors of the channel
transition matrix WY |X with the input vectors PX |U=u and PX .
This implies that the vector ψ̂u is the output vector of a linear
map B with ψu as the input vector, where

B
Δ
=
[√

PY
−1
]

WY |X
[√

PX
]

(6)

and [
√

PX ] and [
√

PY ] denote diagonal matrices with diag-
onal entries PX (x) and PY (y). This linear map B is called
the divergence transition matrix (DTM) as it carried the K–L
divergence metric from the input distribution space to the output
distribution space.

We shall point out here that with this local approximation
technique, both the input and output probability distribution
spaces are linearized as Euclidean spaces by the tangent planes
around the input and the output distributions PX and PY . Hence,
we can define the coordinate system in both distribution spaces,
such as the inner product and orthonormal basis, as in the con-
ventional Euclidean spaces. Under such a coordinate system,
the mutual information I(U ;X) becomes the Euclidean metric
of the perturbation vector ψu averaged over different values of
u. Similarly, the mutual information I(U ;Y ) can also be viewed
as the Euclidean metric of the perturbation vector B ·ψu at the
output space. Hence, the optimization problem of maximizing
the mutual information I(U ;Y ) is turned into the following
linear algebra problem:

max . ∑
u

PU (u) · ‖B ·ψu‖2

subject to : ∑
u

PU (u) · ‖ψu‖2 = 1. (7)

In particular, U can without loss of the optimality be designed
as a uniform binary random variable, and the goal of (7) is to
find the input perturbation vector ψu that provides the largest
output image B ·ψu through the linear map B. The solution of
this problem then relies on the singular value decomposition of
B, and the optimal ψu corresponds to the singular vector of B
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Fig. 8. The divergence transition matrix B serves as a linear map between two
spaces, with right and left singular vectors as orthonormal bases. Different input
singular vectors have different output lengths at the output space.

w.r.t. the largest singular value. Fig. 8 illustrates the geometric
intuition of linearized distributions spaces.

More importantly, this information coupling framework with
the locality constraint allows us to deal with the multi-letter
problems in information theory in a systematic manner. To see
this, consider the multi-letter version of the problem (2)

max
U→Xn→Y n

1
n

I(U ;Y n),

subject to :
1
n

I(U ;Xn)≤ δ,
1
n
‖PXn|U=u −PXn‖2 = O(δ), ∀u, (8)

in which the message is encoded in an n-dimensional signal
vector Xn and the optimization is over the distribution space
of PXn|U=u. By applying the same local approximation tech-
nique, we can again linearize both input and output spaces into
Euclidean spaces, and the linear map between these two spaces
turns out to be the tensor product Bn. Due to the fact that the
singular vectors of Bn are tensor products of the singular vectors
of B, we know that the optimal perturbation vector in the multi-
letter case has the tensor product form, and the optimal con-
ditional distribution PXn|U=u has an i.i.d. structure [37]. More
interestingly, this approach of dealing with multi-letter infor-
mation theory problems can be easily carried to multi-terminal
problems, in which all the information theory problems are
simply reduced to the corresponding linear algebra problems.
In particular, the i.i.d. structure of PXn|U=u for the point-to-
point case was also observed by Shannon with an auxiliary
random variable approach; however, the generalization of the
auxiliary random variable approach to multi-terminal problems,
e.g., the general broadcast channel, turns out to be difficult
open problems. In a nutshell, the information coupling and the
local constraint help us to reduce the manifold structure into a
linear vector space, where the optimization problem, regardless
of the dimensionality can always be solved analytically with
essentially the same routine.

Furthermore, the information coupling formulation not only
simplifies the analysis, but also suggests a new way of commu-
nication over data networks or information transfer over
networks of data variables. Instead of trying to aggregate all the
information available at a node, pack them into data packets,
and send them through the outgoing links, the information
coupling methodology seeks to transmit a small piece of infor-
mation at a time, riding on the existing data traffic [39]. The net-
work design of data variables thus focuses on the propagation
of a single piece of message, from the source data variable to all

destination data variables. Each node in the network only alters
a small fraction of the transmitted symbols, according to the
decoded part of this message. The analytical simplicity of the
information coupling allows such transmissions to be efficient,
even in the presence of general broadcasting and interference.
Furthermore, information coupling can be employed to obtain
useful information from network operation, as a complemen-
tary function for (wireless) network tomography. Consequently,
we can analyze the covariance matrix of received signals at
the fusion center in a sensor network to form communities
like social networks such that energy efficient transmission and
device management can be achieved.

B. Implementation of Information Coupling

Using the information theoretic setup via information cou-
pling, we shall demonstrate how to deal with practical data
analytics. To infer useful results from big data, we shall be
able to acquire important knowledge in general social network
modeling of big data such as Fig. 1. In particular, we consider
X1, . . . ,XM as information transmitters and Y1, . . . ,YN as the
information receivers. The probabilistic relationship between
X’s and Y ’s represents the communication channel, which
copes with the effects of imperfect sampling, noisy observation,
or interference from unknown variables or outliers. In the fol-
lowing, we are going to demonstrate the potential of extracting
critical low dimensional information from (big) data through
the innovative information coupling approach.

To demonstrate the idea, suppose that there is a hidden
source sequence xn = {x1,x2, . . . ,xn}, i.i.d. generated according
to some distribution PX . Instead of observing the hidden source
directly, we are only allowed to observe a sequence yn =
{y1,y2, . . . ,yn}, which can be statistically viewed as the noisy
outputs of the source sequence through a discrete memoryless
channel WY |X . Traditionally, if we want to infer the hidden
source from the noisy observation yn, we would resort to a low-
dimensional sufficient statistic of yn that has all the information
one can tell about xn. However, in many cases, such a sufficient
statistic might be computationally difficult to obtain due to the
high dimensional structures of xn and yn, which turns out to
be the common obstacle in dealing with big data. In contrast
to seeking a useful sufficient statistic, we would like to rather
turn our focus to consider the statistic from yn that is efficient to
describe a certain feature of xn.

In particular, there are many different ways to define the
efficiency of information extraction from data. From the in-
formation theoretic point of view, we would like to employ
the mutual information as the measurement of the information
efficiency about the data. Rigorously, we want to acquire a
binary feature U in xn from the observed data yn, such that the
efficiency, measured by I(U ;Y n), can be maximized. In order to
find such a feature, we shall formulate an optimization problem
that has the same form as the linear information coupling
problem (8), and the optimal solution of (8) characterizes which
feature of xn can be the most efficiently extracted from the
noisy observation yn in terms of the mutual information metric.
Therefore, from [37], we can explicitly express the optimal
solution PXn|U of (8) as the tensor product of the distribution
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Fig. 9. The score function for the noisy observations.

PX |U (x) = PX (x)±
√

δPX (x) ·ψX (x), where ψX is the singular
vector of the DTM with the largest singular value.

Then, we want to estimate this piece of information U
from the noisy observation yn. For this purpose, we apply the
maximum likelihood principle, and the log-likelihood function
can be written as

li(y
n) = log

(
PY n|U=i(y

n)

PY n(yn)

)
, i = 0,1

where PY n and PY n|U are the output distributions of the channel
WY |X with input distributions PXn and PXn|U . Then, the decision
rule depends on the sign of l0(yn)−l1(yn): when it is positive,
we estimate Û = 0, otherwise, Û = 1. Now, noting that both
PY n|U and PY n are product distributions, we can further simplify
l0(yn) as

l0(y
n) =

n

∑
i=1

log

(
PY |U=i(yi)

PY (yi)

)

=
n

∑
i=1

log

(
1+

√
δ · ψY (yi)√

PY (yi)

)

�
√

δ ·
n

∑
i=1

ψY (yi)√
PY (yi)

where in the last equation, we ignore all the higher order terms
of δ. We call ψY√

PY
the score function ψY√

PY
: Y �→R, in which the

empirical sum of this function over the data y1, . . . ,yn is the suf-
ficient statistic of a specific piece of information in xn that can
be the most efficiently estimated from yn. Fig. 9 illustrates the
score function in this point-to-point setup. The score function
derived from the information coupling approach provides the
maximal likelihood statistics of the most efficiently inferable
information from the data, and we call the score function the
efficient statistic of the data. The efficient statistic of the data
can be deemed as a low dimensional label corresponding to the
most significant information of the data that can be employed
in further data processing tasks. In the next subsection, we
shall demonstrate how to apply the efficient statistic to practical
machine learning problems and its performance through an
image recognition example.

Finally, we would like to emphasize that the efficient statistic
can be useful in many machine learning scenarios, such as
image processing, network data mining and clustering. Con-
sider the social network modeling of big data as Fig. 1 with
very large number of nodes in the network. In this case,
acquiring a meaningful sufficient statistic for the data is usually
an intractable task due to the complicated network structure.
Moreover, even if it is possible to specify the sufficient statistic,

Fig. 10. (a) Handwriting recognition between the number “1” and “2” via the
noisy images. (b) Ising model of noisy images. The pixels of the clean image
can be viewed as random variables Xi. After passing through the channel, the
pixels are corrupted by the noise to different levels, and the collection of noisy
pixels are the random variables Yi.

the computational complexity can still be extremely high due
to the high dimensional structure of the data. On the other hand,
the efficient statistic obtained from the information coupling
provides the information that, while low dimensional, keeps the
most significant information about the original data. This is pre-
cisely the main objective of the dimension reduction or feature
extraction studied in machine learning subjects. Equalization in
Section III may be considered as an intuitive implementation
of information coupling in big data. In addition, in order to
acquire the efficient statistic from the data, we simply need to
solve the score function, i.e., the optimal singular vector, which
can be computationally efficient. Therefore, we could see that
information coupling potentially provides a new framework for
efficiently processing and analyzing big networked data.

C. Application to Dimension Reduction in Pattern Recognition

Let us illustrate how the efficient statistic can be applied to
practical data processing. For demonstration purposes, we aim
to address the image recognition task of handwriting numbers
“1” and “2” through noisy images, as illustrated in Fig. 10(a).
We consider these 2-D images as from an Ising model as shown
in Fig. 10(b). Each clean pixel in Fig. 10(b) is passed through
one of the parallel independent noisy observation channels, to
get a noisy image. In abstract, we can think of the pixels of the
clean image as a collection of random variables X1,X2, . . . ,XN .
Then, passing through noisy observation channels with a transi-
tion kernel PY N |XN , the pixels of the noisy image is a collection
of random variables Y1,Y2, . . . ,YN . Now, to apply the efficient



672 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 4, APRIL 2015

statistic to acquire the most significant feature, we shall in
principle go through the following procedures:

1) To determine the divergence transition matrix B, we shall
determine the distributions PXN and PY N as well as the
transition kernel PY N |XN . The distributions PXN and PY N

can be learned from the empirical distribution of the
images viewed as N-dimensional vectors. In addition,
we design the transition kernel PY N |XN in this image
recognition example.

2) Solve the singular value decomposition of B and deter-
mine the optimal left singular vector ψ of B. Note that ψ
has the dimensionality |Y |N .

3) The efficient statistic is then specified by the score func-
tion ψ(yN)/PY N (yN) of the data yN = {y1, . . . ,yN}, which
can be obtained by the yN-th entry of the vector ψY ,
divided by PY N (yN).

Now, let us demonstrate the application of this procedure to
a practical image recognition problem. Here, we employ the
MNIST Database [40] of handwritten digits as the test images,
where each image is of size 19 × 19 pixels and each pixel
value is scaled to have one of four values as in Fig. 10(a).
In particular, as shown in Fig. 10(a), we have a mixture of
images of handwritten digits 1 and 2, and we assume that we
can observe the noisy version of these images. Our goal is to
separate these noisy images with respect to different digits by
computing the score of these images with our algorithm and
ordering them.

To this end, we view the (clean) images as generated from
the Ising model, in which each pixel corresponds to the nodes
Xi in the Ising model. Then, we pass each pixel in the images
independently through a discrete memoryless channel with
transition matrix

⎡
⎢⎣

1−2e 2e e e
2

e 1−3e 2e e
4

e 0 1−4e e
4

0 e e 1− e

⎤
⎥⎦ . (9)

Here, the transition matrix is chosen merely to facilitate our
simulation, and e is the parameter measuring the noise level of
the channel. After passing clean pixels through the channel, we
observe the noisy version of these images, where each noisy
pixel corresponds to Yi in this setup. Clearly, the empirical joint
input and output distributions can be obtained by the statistics
of the images. Then, we can apply our algorithm to compute
the score for each noisy image, and then order these scores to
separate images with respect to different digits.

To measure the performance of our algorithm, we classify a
batch of 2N images with N of 1’s and N of 2’s. After ordering
the scores, an ideal classifier should have the N lowest scored
images belonging to one digit and the N largest scores belong-
ing to the other digit. To compare with the ideal classifier, we
define the separation error probability as the proportion of the
pictures that is wrongly classified, i.e.,

Error probability =
# of wrongly classified pictures

2N
. (10)

Fig. 11. Experimental results for the separation efficiency with respect to
different values of e.

The classifier is more efficient when the separation factor is
closer to 0. For different values of e, our algorithm has the
performance as in Fig. 11. From this simulation result, we can
see that our algorithm is quite efficient in separating images
with respect to different digits. This result tells that the efficient
statistic is in fact a very informative way to describe stochastic
observations.

Remark 3: It might be curious at first glance that in Fig. 11,
the error probability does not decay as the noise level e grows.
In fact, this phenomenon can be explained as follows. Note that
the score function defined in this section not only depends on
the data vectors XN , but also on the designed channel transition
matrix (9). Therefore, different channel transition matrices may
provide different score function on the noisy data vectors Y N .
We shall notice that the score function is designed to extract the
feature that can be communicated the best through the channel,
but not necessary the best feature to separate the two sets of
images. Thus, the performance of the image recognition may
not be improved with a less noisy channel. On the other hand,
we should understand our result as that, with a rather arbitrarily
designed channel transition matrix (9), we have obtained a
rather nice performance of error probabilities, which does not
require any extra learning other than the empirical distributions
of the data, i.e., completely unsupervised. Thus, our result
demonstrates a new potential of applying communication and
information theory to machine learning problems.

Remark 4: Dimension reduction is one of the central topics
in statistics, machine learning, pattern recognition, and data
mining, and has been studied intensively. Celebrated techniques
addressing this subject including principal component analysis
(PCA) [41], K-means clustering [42], independent component
analysis (ICA) [43], and regression analysis [44], where many
efficient algorithms have been developed to implement these
approaches [6], [45]. In particular, these approaches mainly fo-
cus on dealing with the space of the data, rather than addressing
the information flow embedded in the data. On the other hand,
recent studies have suggested the trend of information-centric
data processing [16], thus advocating the research direction
of analyzing the underlying information flow of networked
data. The information coupling approach can be considered
as a technique that aims to provide a framework to reach
this goal from the information theoretic perspective. From the
discussions in this section, we can see that information coupling
studies the data analysis problems from the angle of distribution
space but not simply the data space, Thus, information coupling
potentially provides a fresh view of how information can be
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Fig. 12. Maximal-ratio combining of two equalized data variables (time series).

exchanged between different terminals in implementing the
data processing tasks, which not only helps to more deeply
understand the existing approaches, but also opens a new door
to develop new technologies.

Remark 5: While this simple image recognition example
illustrates the feasibility of introducing information coupling to
data analysis problems, there are critical challenges for future
research:

• How to develop efficient iterative algorithms that exploit
the structure of the graphical models to compute the
singular vectors and evaluate the scores.

• In the case where some training data are available, how
the information coupling approach can be adjusted to
cooperate with the side information.

• Except for the most informative bit, how can we extract
the second and third bits from the data, and how these bits
can be applied to deal with practical data analysis tasks.

V. CONCLUSION

Statistical analysis on big data has usually been treated as
an exercise in statistical data processing. With the help of
statistical communication theory, we have introduced a new
methodology to enable information-centric processing (or sta-
tistical information processing) for big data. Hopefully, this
opens new insights into both big data analytics and statistical
communication theory.

Although we have demonstrated initial feasibility of this
methodology, there are further critically associated challenges
ahead, namely

• How to identify appropriate or enough variables to influ-
ence one variable (or a set of variables).

• How to detect outliers [48].
• How to generalize big data analytics using large

communication network analysis beyond multiuser
communications.

• How to interpret and adopt traditional machine learning
approaches and data processing technologies, such as
(un)supervised learning, feature selection, blind source
separation, via the techniques developed in network com-
munication theories.

APPENDIX A
EQUALIZER IMPLEMENTATION FOR COMMUNICATION

THEORETIC DATA ANALYTICS

As in Fig. 4, by proper selection of adaptive algorithm and
step size, the output of the equalizer after training period gives
the inference

ŷ[n] =
L

∑
l=0

wlx[n− l]. (11)

Based on the minimum MSE criterion, the purpose of training
data is to obtain

argmin
w

⎧⎨
⎩
(

y[n]−
L

∑
l=0

wlx[n− l]

)2
⎫⎬
⎭ (12)

and

argmin
L

⎧⎨
⎩
(

y[n]−
L

∑
l=0

wlx[n− l]

)2
⎫⎬
⎭ .

The first equation is to obtain the vector of weighting co-
efficients, and the second equation is to identify the most
appropriate observation depth, L. Once we identify L, we keep
it and therefore the equalizer structure to infer data. We may
keep the same set of coefficients or update online. Please note
we may also obtain a predictor as follows:

ŷ[n+1] =
L

∑
l=0

wlx[n− l] (13)

where we cannot go into further detail due to the length con-
straint on this paper.

When we have two (or more) data variables to infer another
data variable, say using X1 and X2 to infer Y , we have to use
information fusion as in Fig. 12. Again, we adopt the minimum
MSE criterion, to yield

min
αm[n]

E

⎧⎨
⎩
(

Y −
M

∑
m=1

αm[n]ŷm[n]

)2
⎫⎬
⎭ (14)

where

ŷm[n] =
Lm

∑
l=0

wl,mxm[n− l].
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Necessary conditions for this minimization gives the solution
for αm[n]. The consequent estimator is therefore

ŷ[n] =
M

∑
m=1

αm[n]ŷm[n] =
M

∑
m=1

αm[n]
Lm

∑
l=0

wl,mxm[n− l] (15)

which is defined as the maximal ratio combining of equalized
multivariate regression of different optimal observation lengths
Lm, m = 1, . . . ,M. This design realizes the idea of maximizing
information flow between data variables or time series. For ease
of implementation, we may set αm[n] = αm, or we may adopt
selective combining and equal-gain combining.

Remark 6: A conjecture to explain why we intend to equal-
ize data of a certain length Lm, instead of the entire data set, is
that earlier components in the time series may introduce very
noisy information, like interference or noise in multiuser com-
munication systems or simply weakly correlated information
after a large time separation. Such lengths Lm, m = 1, . . . . ,M,
for data variables X1, . . . ,XM , represent the span/range of useful
data for inference. Of course, based on the MSE, we may
further select useful data variables among X1, . . . ,XM . Similar
concepts are not rare in machine learning, for example, to
identify support vectors in support vector machines (SVMs).
What we are doing here is more effective implementation by
properly selecting data variables, range of observations, and fi-
nally weighting coefficients in each equalizer, for multivariate-
regression leveraging the optimization of information transfer
between relational data variables.
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